Pattern Formation in Confined Plasmas: Why Staircases are Inevitable in Drift-Rossby Turbulence

P.H. Diamond

CMTFO, CASS, Dept. of Physics, UCSD

Science Nonlineaire: 3/17,18

Co-workers:

- Zhibin Guo; SNU
- Ozgur Gurcan; Ecole Polytechnique
- Yusuke Kosuga; Kyushu University
- Guilhem Dif-Pradalier; CEA, Cadarache

Contents

- The System
- Patterns
 - Zonal Flows
 - Avalanches
- The Issues Pattern Competition
- The Staircase
 - Findings
 - Jams
 - Reality
- Discussion

What is a Tokamak?

N.B. No advertising intended...

Tokamak: the most intensively studied magnetic confinement device

PARAMETERS	ITER	KSTAR	
Major radius	6.2m	1.8m	
Minor radius	2.0m	0.5m	
Plasma volume	830m ³	17.8m ³	
Plasma current	15MA 2.0MA		
Toroidal field	5.3T	3.5T	
Plasma fuel	H, D-T	H, D-D	
Superconductor	Nb ₃ Sn, NbTi	Nb ₃ Sn, NbTi	

Primer on Turbulence in Tokamaks I

- Strongly magnetized
 - Quasi 2D cells
 - Localized by $\vec{k} \cdot \vec{B} = 0$ (resonance)

- $\vec{V}_{\perp} = + \frac{c}{B} \vec{E} \times \hat{z}$
- ∇T_e , ∇T_i , ∇n driven
- Akin to thermal Rossby wave, with: $g \rightarrow$ magnetic curvature
- Resembles to wave turbulence, not high *Re* Navier-Stokes turbulence
- Re ill defined, $K \leq 1$

Primer on Turbulence in Tokamaks II

- ∇T , ∇n , etc. driver
- Quasi-2D, elongated cells aligned with B_0
- Characteristic scale ~ few ρ_i
- Characteristic velocity $v_d \sim \rho_* c_s$

2 scales:

 $\rho \equiv gyro-radius$

```
a \equiv \text{cross-section}
```

```
\rho_* \equiv \rho/a \rightarrow \text{key ratio}
```

- Transport scaling: $D \sim \rho v_d \sim \rho_* D_B \sim D_{GB}$
- i.e. Bigger is better! → sets profile scale via heat balance
- Reality: $D \sim \rho_*^{\alpha} D_B$, $\alpha < 1 \rightarrow$ why??

Transport: Local or Non-local?

- 40 years of fusion plasma modeling
 - local, diffusive transport $Q = -n\chi(r)\nabla T$
- $1995 \rightarrow$ increasing evidence for:
 - transport by avalanches as in sand pile/SOCs
 - turbulence propagation and invasion fronts
 - non-locality of transport

$$Q = -\int \kappa(r, r') \nabla T(r') dr'$$

- Physics:
 - Levy flights, SOC, turbulence fronts...
- Fusion:
 - gyro-Bohm breaking
 - (ITER: significant ρ_* extension)
 - → fundamentals of turbulent transport modeling?

Guilhem Dif-Pradalier et al. PRL 2009

• 'Avalanches' form! – flux drive + geometrical 'pinning'

(Autopower frequency spectrum of 'flip')

GK simulation also exhibits avalanching (Heat Flux Spectrum) (Idomura NF09)

- Avalanching is a likely cause of 'gyro-Bohm breaking'
 - → localized cells self-organize to form transient, extended transport events
- Akin domino toppling:
- Pattern competition with shear flows!

Toppling front can penetrate beyond region of local stability

• Cells "pinned" by magnetic geometry

Remarkable	TABLE I. Analogies between the sandpile transport model and a turbulent transport model.		
Similarity:	Turbulent transport in toroidal plasmas	Sandpile model	
Sinnanty.	Localized fluctuation (eddy)	Grid site (cell)	
	Local turbulence mechanism:	Automata rules:	
	Critical gradient for local instability	Critical sandpile slope (Z_{crit})	
	Local eddy-induced transport	Number of grains moved if unstable (N_f)	
	Total energy/particle content	Total number of grains (total mass)	
	Heating noise/background fluctuations	Random rain of grains	
	Energy/particle flux	Sand flux	
	Mean temperature/density profiles	Average slope of sandpile	
	Transport event	Avalanche	
	Sheared electric field	Sheared flow (sheared wind)	

Automaton toppling ↔ Cell/eddy overturning

A cartoon representation of the simple cellular automata rules used to model the sandpile.

Preamble I

- Zonal Flows Ubiquitous for:
 - ~ 2D fluids / plasmas $R_0 < 1$ Rotation $\vec{\Omega}$, Magnetization \vec{B}_0 , Stratification Ex: MFE devices, giant planets, stars...

11

Preamble II

- What is a Zonal Flow?
 - n = 0 potential mode; m = 0 (ZFZF), with possible sideband (GAM)
 - toroidally, poloidally symmetric *ExB* shear flow
- Why are Z.F.'s important?
 - Zonal flows are secondary (nonlinearly driven):
 - modes of minimal inertia (Hasegawa et. al.; Sagdeev, et. al. '78)
 - modes of minimal damping (Rosenbluth, Hinton '98)
 - drive zero transport (n = 0)
 - natural predators to feed off and retain energy released by gradient-driven microturbulence

Zonal Flows I

- Fundamental Idea:
 - Potential vorticity transport + 1 direction of translation symmetry
 - \rightarrow Zonal flow in magnetized plasma / QG fluid
 - Kelvin's theorem is ultimate foundation
- G.C. ambipolarity breaking \rightarrow polarization charge flux \rightarrow Reynolds force
 - Polarization charge $\rho^2 \nabla^2 \phi = n_{i,GC}(\phi) n_e(\phi)$ polarization length scale $\rho^2 \nabla^2 \phi = n_{i,GC}(\phi) - n_e(\phi)$

- so
$$\Gamma_{i,GC} \neq \Gamma_e \implies \rho^2 \langle \widetilde{v}_{rE} \nabla_{\perp}^2 \widetilde{\phi} \rangle \neq 0 \iff PV$$
 transport'
 $\downarrow polarization flux \rightarrow What sets cross-phase?$

- If 1 direction of symmetry (or near symmetry):

$$-\rho^{2} \left\langle \widetilde{v}_{rE} \nabla_{\perp}^{2} \widetilde{\phi} \right\rangle = -\partial_{r} \left\langle \widetilde{v}_{rE} \widetilde{v}_{\perp E} \right\rangle \quad \text{(Taylor, 1915)}$$

 $-\partial_r \langle \widetilde{v}_{rE} \widetilde{v}_{\perp E} \rangle$ **Here** Reynolds force **Flow**

Shearing I

- Coherent shearing: (Kelvin, G.I. Taylor, Dupree'66, BDT'90)
 - radial scattering + $\langle V_E \rangle' \rightarrow$ hybrid decorrelation

$$- k_r^2 D_\perp \rightarrow (k_\theta^2 \langle V_E \rangle'^2 D_\perp / 3)^{1/3} = 1 / \tau_c$$

- shaping, flux compression: Hahm, Burrell '94
- Other shearing effects (linear):

- spatial resonance dispersion: $\omega k_{\parallel}v_{\parallel} \Rightarrow \omega k_{\parallel}v_{\parallel} k_{\theta} \langle V_E \rangle'(r r_0)$
- differential response rotation \rightarrow especially for kinetic curvature effects
- \rightarrow N.B. Caveat: Modes can adjust to weaken effect of external shear (Carreras, et. al. '92; Scott '92)

Time

Shearing II

- Zonal Shears: Wave kinetics (Zakharov et. al.; P.D. et. al. '98, et. seq.) Coherent interaction approach (L. Chen et. al.)
- $dk_{r} / dt = -\partial(\omega + k_{\theta}V_{E}) / \partial r; V_{E} = \langle V_{E} \rangle + \widetilde{V}_{E}$ Mean shearing : $k_r = k_r^{(0)} - k_\theta V_E' \tau$ Vv Zonal $:\left< \delta k_r^2 \right> = D_k \tau$ Х X Random Random shearing $D_k = \sum k_{\theta}^2 \left| \widetilde{V}'_{E,q} \right|^2 \tau_{k,q}$ Wave ray chaos (not shear RPA)
 - Mean Field Wave Kinetics $\frac{\partial N}{\partial t} + (\vec{V}_{gr} + \vec{V}) \cdot \nabla N - \frac{\partial}{\partial r} (\omega + k_{\theta} V_{E}) \cdot \frac{\partial N}{\partial \vec{k}} = \gamma_{\vec{k}} N - C\{N\} - \text{Applicable to ZFs and GAMs}$ $\Rightarrow \frac{\partial}{\partial t} \langle N \rangle - \frac{\partial}{\partial k_r} D_k \frac{\partial}{\partial k_r} \langle N \rangle = \gamma_{\vec{k}} \langle N \rangle - \langle C \{N\} \rangle$ Zonal shearing

15

underlies $D_k \rightarrow$ induced diffusion

- Induces wave packet dispersion

Shearing III

- Energetics: Books Balance for Reynolds Stress-Driven Flows!
- Fluctuation Energy Evolution Z.F. shearing

$$\int d\vec{k} \,\omega \left(\frac{\partial}{\partial t} \langle N \rangle - \frac{\partial}{\partial k_r} D_k \frac{\partial}{\partial k_r} \langle N \rangle \right) \Longrightarrow \frac{\partial}{\partial t} \langle \varepsilon \rangle = -\int d\vec{k} V_{gr}(\vec{k}) D_{\vec{k}} \frac{\partial}{\partial k_r} \langle N \rangle \qquad V_{gr} = \frac{-2k_r k_\theta V_* \rho_s^2}{\left(1 + k_\perp^2 \rho_s^2\right)^2}$$

Point: For $d\langle \Omega \rangle / dk_r < 0$, Z.F. shearing damps wave energy

• Fate of the Energy: Reynolds work on Zonal Flow Modulational $\partial_t \delta V_{\theta} + \partial \left(\delta \left\langle \widetilde{V}_r \widetilde{V}_{\theta} \right\rangle \right) / \partial r = -\gamma \delta V_{\theta}$

Modulational $\mathcal{O}_t \mathcal{O} \mathcal{V}_{\theta} + \mathcal{O} \left(\mathcal{O} \left\langle \mathcal{V}_r \mathcal{V}_{\theta} \right\rangle \right) / \mathcal{O} \mathcal{V}$ Instability $\delta \left\langle \widetilde{\mathcal{V}}_r \widetilde{\mathcal{V}}_{\theta} \right\rangle \sim \frac{k_r k_{\theta} \partial \Omega}{\left(1 + k_r^2 \rho^2\right)^2}$

N.B.: Wave decorrelation essential: Equivalent to PV transport (c.f. Gurcan et. al. 2010)

- Bottom Line:
 - Z.F. growth due to shearing of waves
 - "Reynolds work" and "flow shearing" as relabeling \rightarrow books balance
 - Z.F. damping emerges as critical; MNR '97

Feedback Loops I

• Closing the loop of shearing and Reynolds work

Spectral 'Predator-Prey' equations

Prey \rightarrow Drift waves, $\langle N \rangle$ $\frac{\partial}{\partial t} \langle N \rangle - \frac{\partial}{\partial k_r} D_k \frac{\partial}{\partial k_r} \langle N \rangle = \gamma_k \langle N \rangle - \frac{\Delta \omega_k}{N_0} \langle N \rangle^2$

Predator \rightarrow Zonal flow, $|\phi_q|^2$ $\frac{\partial}{\partial t} |\phi_q|^2 = \Gamma_q \left[\frac{\partial \langle N \rangle}{\partial k_r} \right] |\phi_q|^2 - \gamma_d |\phi_q|^2 - \gamma_{NL} [|\phi_q|^2] |\phi_q|^2$

Feedback Loops II

- Recovering the 'dual cascade':
 - Prey \rightarrow <N> ~ < Ω > \Rightarrow induced diffusion to high k_r -

$$\Rightarrow Analogous \rightarrow forward potential enstrophy cascade: PV transport$$

- Predator
$$\rightarrow |\phi_q|^2 \sim \langle V_{E,\theta}^2 \rangle \begin{bmatrix} \Rightarrow \text{ growth of } n=0, m=0 \text{ Z.F. by turbulent Reynolds work} \\ \Rightarrow \text{ Analogous} \rightarrow \text{ inverse energy cascade} \end{bmatrix}$$

 Mean Field Predator-Prey Model (P.D. et. al. '94, Dl²H '05)

$$\begin{aligned} &\frac{\partial}{\partial t}N = \gamma N - \alpha V^2 N - \Delta \omega N^2 \\ &\frac{\partial}{\partial t}V^2 = \alpha N V^2 - \gamma_d V^2 - \gamma_{NL} (V^2) V^2 \end{aligned}$$

18

State	No flow	Flow ($\alpha_2 = 0$)	Flow $(\alpha_2 \neq 0)$
N (drift wave turbulence level)	$\frac{\gamma}{\Delta\omega}$	$\frac{\gamma_{\rm d}}{\alpha}$	$\frac{\gamma_{\rm d} + \alpha_2 \gamma \alpha^{-1}}{\alpha + \Delta \omega \alpha_2 \alpha^{-1}}$
V^2 (mean square flow)	0	$\frac{\gamma}{\alpha} - \frac{\Delta \omega \gamma_{\rm d}}{\alpha^2}$	$\frac{\gamma - \Delta \omega \gamma_{\rm d} \alpha^{-1}}{\alpha + \Delta \omega \alpha_2 \alpha^{-1}}$
Drive/excitation mechanism	Linear growth	Linear growth	Linear growth Nonlinear damping of flow
Regulation/inhibition mechanism	Self-interaction of turbulence	Random shearing, self-interaction	Random shearing, self-interaction
Branching ratio $\frac{V^2}{N}$	0	$\frac{\gamma - \Delta \omega \gamma_{\rm d} \alpha^{-1}}{\gamma_{\rm d}}$	$\frac{\gamma - \Delta \omega \gamma_{\rm d} \alpha^{-1}}{\gamma_{\rm d} + \alpha_2 \gamma \alpha^{-1}}$
Threshold (without noise)	$\gamma > 0$	$\gamma > \Delta \omega \gamma_{\rm d} \alpha^{-1}$	$\gamma > \Delta \omega \gamma_{\rm d} \alpha^{-1}$

System Status

Observations

- Fundamental concept of zonal flow formation is secondary mode in gas of drift waves, i.e. modulational instability
 - wave kinetics
 - envelope expansion
 - ...
- N.B. No clear scale separation, inverse cascade, Rhines mechanism ...
- Interest is driven by (favorable) impact of flows on confinement
- This drives a concern with feedback and the picture of coexisting, competing populations, etc.

A Central Question: Secondary Pattern Selection

- Two secondary structures suggested
 - Zonal flow \rightarrow quasi-coherent, regulates transport via shearing
 - Avalanche → stochastic, induces extended transport
 events
- Nature of co-existence?

Staircases and Traffic Jams

Single Barrier → Lattice of Shear Layers

→ Jam Patterns

Highlights

Observation of ExB staircases

 \rightarrow Failure of conventional theory

(emergence of particular scale???)

Model extension from Burgers to telegraph

 $\partial_t \delta T + \lambda \delta T \partial_x \delta T = \chi_2 \partial_x^2 \delta T$ $\Rightarrow \tau \partial_t^2 \delta T + \partial_t \delta T + \lambda \delta T \partial_x \delta T = \chi_2 \partial_x^2 \delta T$

finite response time \rightarrow like drivers' response time in traffic

Analysis of telegraph eqn. predicts heat flux jam

- scale of jam comparable to staircase step

Motivation: ExB staircase formation (1)

- ExB flows often observed to self-organize in magnetized plasmas eg.) mean sheared flows, zonal flows, ...
- `ExB staircase' is observed to form

(G. Dif-Pradalier, P.D. et al. Phys. Rev. E. '10)

- flux driven, full f simulation
- Quasi-regular pattern of shear layers and profile corrugations
- Region of the extent $\Delta \gg \Delta_c$ interspersed by temp. corrugation/ExB jets

 \rightarrow ExB staircases

- so-named after the analogy to PV staircases and atmospheric jets
- Step spacing \rightarrow avalanche outer-scale

ExB Staircase (2)

• Important feature: co-existence of shear flows and avalanches

Seem mutually exclusive ?!?
→ strong ExB shear prohibits transport
→ avalanches smooth out corrugations
Can co-exist by separating regions into:

avalanches of the size
⇒ Δ_c

localized strong corrugations + jets

- How understand the formation of ExB staircase???
 - What is process of self-organization linking avalanche scale to ExB step scale?

i.e. how explain the emergence of the step scale ???

Staircases build up from the edge

 \rightarrow staircases may not be related to zonal flow eigenfunctions

\rightarrow How describe generation mechanism??

(GYSELA simulation)

<u>Corrugation points and rational surfaces</u> – no relation!

Step location not tied to magnetic geometry structure in a simple way

Towards a model

• How do we understand quasi-regular pattern of ExB staircase, generated from stochastic heat avalanche???

• An idea: jam of heat avalanche

corrugated profile ↔ ExB staircase

→ corrugation of profile occurs by 'jam' of heat avalanche flux

* \rightarrow time delay between $Q[\delta T]$ and δT is crucial element

like drivers' response time in traffic

 \rightarrow accumulation of heat increment \rightarrow stationary corrugated profile

• How do we actually model heat avalanche 'jam' ??? \rightarrow origin in dynamics?

Traffic jam dynamics: 'jamiton'

• A model for Traffic jam dynamics \rightarrow Whitham

$$egin{split} &
ho_t + (
ho v)_x = 0 \ &v_t + v v_x = -rac{1}{ au} \left\{ v - V(
ho) + rac{
u}{
ho}
ho_x
ight\} \end{split}$$

 \rightarrow Instability occurs when

 $\tau > \nu/(\rho_0^2 {V_0'}^2)$

$$D_{eff} =
u - au
ho_0^2 {V_0'}^2 < 0 \;
ightarrow$$
 clustering instability

 \rightarrow Indicative of jam formation

• Simulation of traffic jam formation

- $ho \rightarrow$ car density
- v o traffic flow velocity
- $V(
 ho) rac{
 u}{
 ho}
 ho_x \ o$ an equilibrium traffic flow
 - $au
 ightarrow {
 m driver'}$ s response time

http://math.mit.edu/projects/traffic/

- → Jamitons (Flynn, et.al., '08)
- n.b. I.V.P. \rightarrow decay study

Heat avalanche dynamics model (`the usual')

Hwa+Kardar '92, P.D. + Hahm '95, Carreras, et al. '96, ... GK simulation, ... Dif-Pradalier '10

- δT :deviation from marginal profile \rightarrow conserved order parameter
- Heat Balance Eq.: $\partial_t \delta T + \partial_x Q[\delta T] = 0 \rightarrow$ up to source and noise
- Heat Flux $Q[\delta T] \rightarrow$ utilize symmetry argument, ala' Ginzburg-Landau
 - Usual: → joint reflectional symmetry (Hwa+Kardar'92, Diamond+Hahm '95)

$$\begin{split} & & & & \\$$

lowest order \rightarrow Burgers equation

$$\partial_t \delta T + \lambda \delta T \partial_x \delta T = \chi_2 \partial_x^2 \delta T$$

An extension of the heat avalanche dynamics

• An extension: a finite time of relaxation of *Q* toward SOC flux state

$$\begin{array}{ll} \partial_t Q = -\frac{1}{\tau} \left(Q - Q_0(\delta T) \right) & Q_0[\delta T] = \frac{\lambda}{2} \delta T^2 - \chi_2 \partial_x \delta T + \chi_4 \partial_x^3 \delta T \\ & (\text{Guyot-Krumhansl}) \end{array}$$

$$\rightarrow \text{ In principle} \quad \tau(\delta T, Q_0) \quad \longleftrightarrow \quad \text{large near criticality } (\sim \text{ critical slowing down}) \end{array}$$

i.e. enforces time delay between δT and heat flux

• Dynamics of heat avalanche:

$$\partial_t \delta T + \lambda \delta T \partial_x \delta T = \chi_2 \partial_x^2 \delta T - \chi_4 \partial_x^4 \delta T - \tau \partial_t^2 \delta T$$

 \rightarrow Burgers
(P.D. + T.S.H. '95)

n.b. model for heat evolution

diffusion \rightarrow Burgers \rightarrow Telegraph

New: finite response time

 \rightarrow Telegraph equation

Relaxation time: the idea

- What is ' τ ' physically? \rightarrow Learn from traffic jam dynamics
- A useful analogy:

heat avalanche dynamics	traffic flow dynamics	
temp. deviation from marginal profile	local car density	
heat flux	traffic flow	
mean SOC flux (ala joint relflection symmetry)	equilibrium, steady traffic flow	
heat flux relaxation time	driver's response time	

- driver's response can induce traffic jam
- jam in avalanche \rightarrow profile corrugation \rightarrow staircase?!?
- Key: instantaneous flux vs. mean flux

Heat flux dynamics: when important?

• Heat flux evolution:

$$\partial_t Q = -\frac{1}{\tau_{mix}} (Q - Q_0) \rightarrow \text{time delay, when important?}$$

Conventional Transport Analysis

 $au_{mix} \ll$ time scale of interest

\rightarrow Heat flux relaxes to the mean value immediately

$$Q = Q_0$$

 \rightarrow Profile evolves via the mean flux

$$\partial_t T + \partial_x Q_0 = 0$$

then

diff. $\partial_t T = \chi \partial_x^2 T$ Burgers $\partial_t \delta T + \lambda \delta T \partial_x \delta T = \chi_2 \partial_x^2 \delta T$ New approach for transport analysis

 \rightarrow mixing time can be long, so

 $au_{mix} \sim ext{time scale of interest} \\ ext{mesoscale}$

→ Heat evo. and Profile evo. must be treated self-consistently

$$\begin{cases} \partial_t Q = -\frac{1}{\tau}(Q - Q_0) \\ \partial_t \delta T + \partial_x Q[\delta T] = 0 \end{cases}$$

then telegraph equation:

 $\partial_t \delta T + \lambda \delta T \partial_x \delta T = \chi_2 \partial_x^2 \delta T - \tau \partial_t^2 \delta T$

Analysis of heat avalanche dynamics via telegraph

- How do heat avalanches jam?
- Consider an initial avalanche, with amplitude δT_0 , propagating at the speed $v_0 = \lambda \delta T_0$

 \rightarrow turbulence model dependent

• Dynamics:

Analysis of heat avalanche jam dynamics

- In large tau limit, what happens? → Heat flux jams!!
- Recall plasma response time akin to driver's response time in traffic dynamics
- negative heat conduction instability occurs (as in clustering instability in traffic jam dynamics)

$$egin{aligned} \partial_t \widetilde{\delta T} + v_0 \partial_x \widetilde{\delta T} &= \chi_2 \partial_x^2 \widetilde{\delta T} - \chi_4 \partial_x^4 \widetilde{\delta T} - au \partial_t^2 \widetilde{\delta T} \ & o (\chi_2 - v_0^2 au) \partial_x^2 \widetilde{\delta T} - \chi_4 \partial_x^4 \widetilde{\delta T} \end{aligned}$$

<0 when overtaking → clustering instability

n.b. akin to negative viscosity instability of ZF in DW turbulence

instead ZF as secondary mode in the gas of primary DW

→ Heat flux 'jamiton' as secondary mode in the gas of primary avalanches

Analysis of heat avalanche jam dynamics

• Growth rate of the jamiton instability

$$\gamma = -\frac{1}{2\tau} + \frac{1}{2\tau} \sqrt{\frac{r+1}{2} - 2\tau \chi_2 k^2 \left(1 + \frac{\chi_4 k^2}{\chi_2}\right)} \qquad r = \sqrt{\left\{4\tau \chi_2 k^2 \left(1 + \frac{\chi_4 k^2}{\chi_2}\right) - 1\right\}^2 + 16v_0^2 k^2 \tau^2}$$

• Threshold for instability

$$\tau > \frac{\chi_2}{v_0^2} \left(1 + \frac{\chi_4 k^2}{\chi_2} \right)$$

n.b. $1/\tau = 1/\tau[\mathcal{E}]$ \rightarrow clustering instability strongest near criticality

 \rightarrow critical minimal delay time

• Scale for maximum growth

 $k^{2} \cong \frac{\chi_{2}}{\chi_{4}} \sqrt{\frac{\chi_{4}v_{0}^{2}}{4\chi_{2}^{3}}} \qquad \text{from} \qquad \frac{\partial\gamma}{\partial k^{2}} = 0 \implies 8\tau \frac{\chi_{4}^{2}}{\chi_{2}} k^{6} + 4\tau \chi_{4} k^{4} + 2\frac{\chi_{4}}{\chi_{2}} k^{2} + 1 - \frac{v_{0}^{2}\tau}{\chi_{2}} = 0$ $\Rightarrow \text{staircase size,} \qquad \Delta_{stair}^{2} (\delta T) \text{ , } \delta T \qquad \text{from saturation: consider shearing}$

Scaling of characteristic jam scale

• Saturation: Shearing strength to suppress clustering instability

$$\rightarrow$$
 saturated amplitude: $\frac{\delta T}{T_i} \sim \frac{1}{v_{thi}\rho_i} \sqrt{\frac{\chi_4}{\tau}}$

• Characteristic scale

$$\Delta^2 \sim k^{-2}(\delta T) \sim \frac{2v_{thi}}{\lambda T_i} \rho_i \sqrt{\chi_2 \tau} \qquad \chi_2 \sim \chi_{neo}$$

- Geometric mean of ho_i and $\sqrt{\chi_2 au}$: ambient diffusion length in 1 relaxation time
- 'standard' parameters: $\Delta \sim 10 \Delta_c$

Jam growth qualitatively consistent with staircase formation

Dif-Pradalier '13 caveat: based on model with compressional waves

Direct exp. characterisation difficult:

flows, profiles & gradients

Shear layers in staircase:

- eddies stretched, tilted, fragmented
- predict quasi-periodic decorrelation turbulent fluct.

$$\mathcal{C}_{\phi}(r,\theta,t,\delta r) = \frac{\langle \tilde{\phi}(r,\theta,t) \, \tilde{\phi}(r+\delta r,\theta,t) \rangle_{\tau}}{\left[\langle \tilde{\phi}(r,\theta,t)^2 \rangle_{\tau} \, \langle \tilde{\phi}(r+\delta r,\theta,t)^2 \rangle_{\tau} \right]^{1/2}}$$

•
$$\mathcal{C}_{\phi} = 1/2$$
 when $\delta r = L_c$

testable with fast-sweeping reflectometry

Moderate fluctuation level & MHD-free plasmas: optimal for staircase observation

fast-sweeping reflectometry on Tore Supra [Clairet RSI 10, Hornung PPCF 13] \blacktriangleright localised measure, fast (~ μ s), sweeping in X-mode : full radial profile δn

 \blacktriangleright routinely estimate L_c

cea

Staircase predicted...then observed experimentally

- Large set: 179 staircase steps, so far [Dif-Pradalier PRL 15 & Hornung, in prep.]
 - quasi-regularly spaced radial local minima of L_c
 - reproducible: not random & robust w.r.t. definition of L_c
 - tilt consistent with flow shear around minima
 - no correlation to local q rationals in rules MHD out
 - consistent width [~ $10\rho_i$] & spacing [meso.] of local L_c minima

When theoretical predictions lead to experimental discovery

IRfm

- flow width $\delta \sim 11 \rho_i$ consistent with GYSELA obs. & ZF measurements [Fujisawa PRL 04]
- turbulence-borne m not MHD
 [Dif-Pradalier PRL 15 & Hornung, in prep.]

Aside: FYI – Historical Note

- \rightarrow Collective Dynamics of Turbulent Eddy
- 'Aether' I First Quasi-Particle Model of Transport?!
- Kelvin, 1887
 - XLV. On the Propagation of Laminar Motion through a turbulently moving Inviscid Liquid. By Sir WILLIAM THOMSON, LL.D., F.R.S.*
 - 1. IN endeavouring to investigate turbulent motion of water between two fixed planes, for a promised communication to Section A of the British Association at its coming Meeting in Manchester, I have found something seemingly towards a solution (many times tried for within the last twenty years) of the problem to construct, by giving vortex motion to an incompressible inviscid fluid, a medium which shall transmit waves of laminar motion as the luminiferous æther transmits waves of light.

2. Let the fluid be unbounded on all sides, and let u, v, w be the velocity-components, and p the pressure at (x, y, z, t). We have

$$\frac{du}{dx} + \frac{dv}{dy} + \frac{dw}{dz} = 0 \quad . \quad . \quad . \quad . \quad (1),$$

* Communicated by the Author, having been read before Section A of the British Association at its recent Meeting in Manchester.

 $R^2 \sim \langle \widetilde{v}^2 \rangle$

Thus we have the very remarkable result that laminar disturbance is propagated according to the well-known mode of waves of distortion in a homogeneous elastic solid; and that the velocity of propagation is $\frac{\sqrt{2}}{3}$ R, or about \cdot 47 of the average velocity of the turbulent motion of the fluid.

- → time delay between Reynolds stress and wave shear introduced
- → converts diffusion equation to wave equation
- → describes wave in ensemble of vortex quasi-particles
- c.f. "Worlds of Flow", O. Darrigol

 $R^2 \sim \langle \widetilde{v}^2 \rangle$

Thus we have the very remarkable result that laminar disturbance is propagated according to the well-known mode of waves of distortion in a homogeneous elastic solid; and that the velocity of propagation is $\frac{\sqrt{2}}{3}$ R, or about \cdot 47 of the average velocity of the turbulent motion of the fluid.

- → time delay between Reynolds stress and wave shear introduced
- → converts diffusion equation to wave equation
- → describes wave in ensemble of vortex quasi-particles
- c.f. "Worlds of Flow", O. Darrigol

- A model for ExB staircase formation
 - Heat avalanche jam \rightarrow profile corrugation \rightarrow ExB staircase
 - model developed based on analogy to traffic dynamics \rightarrow telegraph eqn.

- Analysis of heat flux jam dynamics
 - Negative conduction instability as onset of jam formation
 - Growth rate, threshold, scale for maximal growth
 - Qualitative estimate: scale for maximal growth $\Delta \sim 10 \Delta_c$

 \rightarrow comparable to staircase step size

Ongoing Work

- This analysis ↔ set in context of heat transport
- Implications for momentum transport? →
 - consider system of flow, wave population, wave momentum flux
 - time delay set by decay of wave population correlation due ray stochastization \rightarrow elasticity
 - flux limited PV transport allows closure of system

• Propagating (radially) zonal shear waves

predicted, as well as vortex mode

- For τ_{deby} larger, Z.F. state transitions to LCO, rather than fixed point
- τ_{deby} due elastization necessarily impacts dynamics of L \rightarrow I \rightarrow H transition

Some Relevant Publications

- Y. Kosuga, P.H. Diamond, O.D. Gurcan; Phys. Rev. Lett. 110, 105002 (2013)
- O.D. Gurcan, P.H. Diamond, et al, Phys. Plasmas 20, 022307 (2013)
- Y. Kosuga, P.H. Diamond, Phys. Plasmas (2014)
- Y. Kosuga: Invited Talk, 2013 APS-DPP Meeting
- Z.B. Guo, P.H. Diamond, et al; Phys. Rev. E, in press (2014)
- Z.B. Guo, P.H. Diamond; Phys. Plasmas (2014)
- G. Dif-Pradalier, Phys. Rev. E (2010, Phys. Rev. Lett. (2015)